Periodic Schur Form and Some Matrix Equations

نویسنده

  • P. Van Dooren
چکیده

We propose an elegant and conceptually simple method for computing the periodic solution of three classes of periodic matrix equations | Ric-cati, Lyapunov and Sylvester. Such equations arise naturally in several problems of linear system theory. Our approach is very attractive from a numerical point of view, since it is based on the periodic Schur form of techniques involving unitary (orthogonal in the real case) transformations only. Our approach readily extends to more general situations, such as when the equations are given in implicit or descriptor form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions to Parallel Algorithms for Sylvester-type Matrix Equations and Periodic Eigenvalue Reordering in Cyclic Matrix Products

This Licentiate Thesis contains contributions in two different subfields of Computing Science: parallel ScaLAPACK-style algorithms for Sylvester-type matrix equations and periodic eigenvalue reordering in a cyclic product of matrices. Sylvester-type matrix equations, like the continuous-time Sylvester equation AX −XB = C, where A of size m×m, B of size n×n and C of size m×n are general matrices...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

Equivalent Characterizations of Periodical Invariant Subspaces

This paper mainly treats of the interconnections between the periodic Schur form and its associated periodical deflating subspaces. We establish some equivalent statements of the periodic Schur decomposition for regular periodic matrix pairs. Based on these equivalences, we define the eigenspaces for regular periodic matrix pairs, and point out the corresponding eigenvalues inherited from a giv...

متن کامل

Improved numerical Floquet Multipliers

Abstract This paper studies numerical methods for linear stability analysis of periodic solutions in codes for bifurcation analysis of small systems of ordinary differential equations (ODEs). Popular techniques in use today (including the AUTO97 method) produce very inaccurate Floquet multipliers if the system has very large or small multipliers. These codes compute the monodromy matrix explici...

متن کامل

Direct Eigenvalue Reordering in a Product of Matrices in Extended Periodic Real Schur Form∗

A direct method for eigenvalue reordering in a product of a K-periodic matrix sequence in periodic or extended periodic real Schur form is presented and analyzed. Each reordering of two adjacent sequences of diagonal blocks is performed tentatively to guarantee backward stability and involves solving a K-periodic Sylvester equation (PSE) and constructing a K-periodic sequence of orthogonal tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993